Adaptation and Enhancement of Evaluation Measures to Overlapping Graph Clusterings
نویسندگان
چکیده
Quality measures are important to evaluate graph clustering algorithms by providing a means to assess the quality of a derived cluster structure. In this paper, we focus on overlapping graph structures, as many realworld networks have a structure of highly overlapping cohesive groups. We propose three methods to adapt existing crisp quality measures such that they can handle graph overlaps correctly, but also ensure that their properties for the evaluation of crisp graph clusterings are preserved when assessing a crisp cluster structure. We demonstrate our methods on such measures as Density, Newman’s modularity and Conductance. We also propose an enhancement of an existing modularity measure for networks with overlapping structure. The newly proposed measures are analysed using experiments on artificial graphs that possess overlapping structure. For this evaluation, we apply a graph generation model that creates clustered graphs with overlaps that are similar to real-world networks i.e. their node degree and cluster size distribution follow a power law.
منابع مشابه
Engineering Comparators for Graph Clusterings
A promising approach to compare two graph clusterings is based on using measurements for calculating the distance between them. Existing measures either use the structure of clusterings or quality-based aspects with respect to some index evaluating both clusterings. Each approach suffers from conceptional drawbacks. We introduce a new approach combining both aspects and leading to better result...
متن کاملWeighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملOn comparing clusterings: an element-centric framework unifies overlaps and hierarchy
Clustering is one of the most universal approaches for understanding complex data. A pivotal aspect of clustering analysis is quantitatively comparing clusterings; clustering comparison is the basis for tasks such as clustering evaluation, consensus clustering, and tracking the temporal evolution of clusters. For example, the extrinsic evaluation of clustering methods requires comparing the unc...
متن کاملExperiments on Comparing Graph Clusterings
A promising approach to compare graph clusterings is based on using measurements for calculating the distance. Existing measures either use the structure of clusterings or quality–based aspects. Each approach suffers from critical drawbacks. We introduce a new approach combining both aspects and leading to better results for comparing graph clusterings. An experimental evaluation of existing an...
متن کاملComparing hard and overlapping clusterings
Similarity measures for comparing clusterings is an important component, e.g., of evaluating clustering algorithms, for consensus clustering, and for clustering stability assessment. These measures have been studied for over 40 years in the domain of exclusive hard clusterings (exhaustive and mutually exclusive object sets). In the past years, the literature has proposed measures to handle more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012